10.1002/ejic.200701325

Surface-Assisted Synthesis and Behavior of Dimetallic Mixed-Metal Complexes $[M_2Cl_2(\mu\text{-}Cl)_4(CO)_6M'(L)_2]$ (M = Ru, Os; M' = Fe, Co; L = CH_3CH_2OH , H_2O)

Minna Jakonen, [a] Pipsa Hirva, [a] Taina Nivajärvi, [a] Mirja Kallinen, [a] and Matti Haukka*[a]

Ruthenium / Osmium / Cobalt / Iron / Synthesis design

The last column in Table 1 on page 3503 of the original article^[1] is incorrect. The correct Table 1 and two sentences referring to this table in lines 13–21 of the right-hand column on the same page are given below.

Table 1. Calculated DFT energies of the decomposition routes presented in Scheme 1. Values in bold are taken from ref.^[9]

M	M′	E _I (kJ/mol)	E _{II} (kJ/mol)	E _{III} (kJ/mol)
Ru	Fe	-34	-325	-96
Ru	Co	-31	-287	-78
Os	Fe	-33	-327	_99
Os	Co	-29	-287	-80

It also seems that decomposition step II is around 40 kJ/mol more favourable with iron than with cobalt, which is also consistent with experimental observations. According to our calculations, in $M^\prime Cl_2(H_2O)_4$ the most favourable isomer is the $\mathit{trans}(Cl)$ structure with both iron and cobalt, although the energy difference between the isomers is only 4–5 kJ/mol for both metal chlorides.

The Authors

Received: December 6, 2007 Published Online: December 12, 2007

M. Jakonen, P. Hirva, T. Nivajärvi, M. Kallinen, M. Haukka, Eur. J. Inorg. Chem. 2007, 3497–3508.

[[]a] University of Joensuu, Department of Chemistry, P. O. Box 111, 80101, Joensuu, Finland E-mail: matti.haukka@joensuu.fi